

مراحعات الثانوية العامة

للعام الدراسي 2021م - 2022م

الأحد 28 شوال 1443هـ 29 مايو/ أيّار 2022 Sunday 29 May

 $\underline{\psi} - \underline{\psi} = \frac{\psi(\tau) - \psi(\tau)}{\tau} = \frac{\psi(\tau)}{\tau} = \frac$

 $\frac{\gamma_w}{\gamma} = \frac{\gamma_w}{\gamma} = \frac{\gamma_w}{\gamma} = \frac{\gamma_w}{\gamma} = \frac{\gamma_w}{\gamma}$ السالب مرفوض

۲) إذا كان $\mathfrak{O}(m) = (m+1)(m-1)^{1}$ معرفاً على $[-7,\infty]$ فجد:

 $_{-}$ القيم القصوى المحلية والمطلقة لـ $_{0}$ (س) وبين نوعها .

أ- مجالات التزايد والتناقص لـ v(m) .

 $[1 \times^{\mathsf{Y}} (1-\omega)] + [1 \times (1-\omega) \times (1+\omega)] = (\omega)^{\mathsf{Y}}$

v'(1-w) + (Y-w)(Y+w) = (w)'v'

 $(w) = 7w^7 - 7w + 3w - 3 + w^7 - 7w + 1$

 $9 = \frac{1}{2} \frac{1}{2} = \frac{m-1}{2} = (2) \frac{1}{2} \frac{1}{2$

إعداد المدرس/ سليم عبد الرملاوي (مدرسة فلسطين الثانوية للبنين)

الراعى الحصري

امتحان الكتاب الأول

القسم الأول يتكون من ثلاثة أسئلة وعلى المشترك أن يجيب عليها

السؤال الأول / يتكون من 15 فقرة اختيار من متعدد

ا. إذا كان $v(w) = (w-1)^{\top} + Y$ س يحقق رول في الفترة [٥٠١] فإن قيمة $\cdot ?$

اً) -۱۲ ($\frac{1}{2}$ () -۱۲ ($\frac{1}{2}$ $\frac{1}{2}$ ($\frac{1}{2}$) -۱۲ ($\frac{1}{2}$)

٥. الشكل المجاور يمثل منحنى $\mathcal{D}^{(m)}$ للاقتران $\mathcal{D}^{(m)}$ إذا علمت أن $\mathcal{D}^{(n)}$ فما

. إذا كان المستقيم $\omega=\pi$ ١ $\omega-\gamma$ يمس منحنى الاقتران ω (ω) = ω^{7} + γ عند $\omega=1$ فأوجد

) 0,1 (w) = 0 (w) = 0

د) ق (س)مقعر للأعلى علي ع ج) ن (س)مقعر للأسفل علي ع ٩. إذا كانت ص = هُمْ فما قيم الثابت التي تحقق المعادلة ص ً − ٥ص ً + ٢ص =٠٠؟

١١. إذا كان σ (س) اقتراناً متصلاً ومتناقصاً على الفترة [٤٥١] فإن إحدى العبارات الأتية صحيحة دائماً؟ $(7)^{\prime} \circ (7) \circ$

ب) عند س = ۳ توجد قیمة صغری محلیة ج) عند س = ٣ توجد قيمة عظمى مطلقة د) عند m = 7 توجد قیمة صغری مطلقة

۱۱. الاقتران σ (س) متصل على σ ، σ (۳) σ ، σ (۳) σ ، σ فإن إحدى العبارات الاقتران σ (۳) متصل على σ ، σ العبارات σ

۱۳. $\upsilon(m)=m^{7}$ ، ه. $(m)=\frac{1}{7}$ ، $m\neq\frac{1}{7}$ ، $m\neq\frac{1}{7}$ ، $m\neq\frac{1}{7}$ ن جا خفما دان $(\sigma > a)^{7}(1)=-1$ غفما دان $(\sigma > a)^{7}(1)=-1$

۱٤. إذا كان $v^{\gamma}\left(\sqrt{m}+1
ight)=0$ $v^{\gamma}-1$ فما قيمة $v^{\gamma}\left(\gamma
ight)$ علماً بأن $v^{\gamma}\left(m
ight)>0$

- ۱۰. إذا كان $\sigma(m)$ كثير حدود له نقطة حرجة عند $m=\gamma$ وكانت $\sigma'(m)=m$ ب m-1فماذا تمثل النقطة $(\upsilon,\upsilon,\upsilon,\upsilon)$ ؟

> أ) نقطة انعطاف د) انعطاف أفقى ج) عظمی محلیة

> > السؤال الثاني :-

علي[٣،١]جد :

يحقق شروط نظرية القيمة المتوسطة $\cdot = (w)$ إذا كان $(w) = \cdot$ $m \geq m \geq 1 + m + m \leq m \leq m$

أ- الثابتين ا،ب

 $\Upsilon = \mathfrak{V}(m)$ متصل عند $m = \Upsilon$

ب- جد قيمة / قيم ج التي تعينها النظرية

٤ + ١٢ - ٨ - ١٢ + ب ٤ + ١٢ = -٤ + ب $1 \leftarrow \Lambda - = -1 \rightarrow 1$ $T > \omega > T$ $T - \tau \omega T$ $(\Upsilon)\upsilon = (\Upsilon)\upsilon$ $7 = 1 + 1 \iff 7 - 17 = 1 + 1$

بالتعويض في معادلة ١ ۱۲ – ب = –۸

 $\lambda - = -\lambda \Longrightarrow -\xi \subset \lambda = -\lambda$ ں = ۱۲

مراجعات مبحث/ الرياضيات (الفرع العلمي)

۲) إذا كان v(m)=ج $\int_{-\pi}^{\pi} -\frac{1}{\sqrt{2}} -\frac{1}{\sqrt{2}} = \pi$ أوجد: أ- فترات التقعر للأعلى وللأسفل لـ v(m). ψ . نقاط الانعطاف وزوایا الانعطاف للاقتران $\psi(\omega)$.

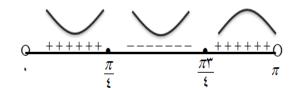
 $\frac{\pi}{4} = \omega$

ں (س) =جا^۲س / جتا۲س

ں '(س) =۲ جاسجتاس + " ×۲ جا۲س

ש (m) = جاץ ש+ **ج**וץ ש

ں ´(س) = ۲جا۲س اً - π رس)مقعر للأعلى ا π ر π π π عد للأسفل $\sigma(\omega)$ مقعر للأسفل $\frac{\pi^{2}}{\xi}$



ب- نقاط الانعطاف

$$\left(\frac{1}{Y}, \frac{\pi}{\xi}\right) \Leftarrow \frac{1}{Y} = \frac{\pi}{\xi} \text{ لله } \frac{1}{Y} - \frac{\pi}{\xi} \text{ then } \frac{1}{Y} - \frac{\pi}{\xi} \text{ then } \frac{\pi}{\xi} \text{$$

ظاه = υ $= \frac{\pi}{5}$ اظاه = υ $117 = \omega \leftarrow Y - \frac{\pi \gamma}{5}$ طاھ = $U = \left(\frac{\pi \gamma}{5}\right)$ جما

۱) ن(س)=۲س+۳، ن(س)+ك(س)=(ن∘ك)(س)أوجدني

₹=(Y) ≥ ₹=(Y) ≥ ₹ + (Y) ≥ ₹ + (Y) ≥ ₹

 $(w) \times ((w)) = 0 \times ((w)) \times (w)$

 $Y = (Y) \circ U \leftarrow Y = (U) \circ U$

 $((\Upsilon) \triangleleft) \upsilon = (\Upsilon) \triangleleft + (\Upsilon) \upsilon$

امتحان الكتاب الأول/ القسم الثاني

القيم الصغرى المحلية $\upsilon(1)$ = صفر مطلقة

القيم العظمي المحلية $\xi = \xi \times 1 = (1 -)\upsilon$ $\upsilon(-1)$ صفر مطلقة

ں (س)متصل علی [-۲٥٥]

 $\mathbf{v} = \mathbf{v} - \mathbf{v} = \mathbf{v} - \mathbf{v}$

 $[-|\mathcal{S}|]$ $\mathcal{O}(m)$ متناقص

-- = - = - = - = - = - $[-7,-1]\cup[0,1]\cup[0,1]$ متزاید

٣ = ٢ س٣

١) قذف جسم رأسياً للأعلى من سطح برج بحيث ارتفاعه من البرج ف بالأمتار يعطى بالعلاقة \wedge ن = \sim \sim \sim فإذا كان أقصى ارتفاع وصل إليه الجسم عن سطح الأرض يساوي \sim

أ- ارتفاع البرج.

ب- سرعة الجسم عندما يكون على ارتفاع ٢٥٥ من سطح الأرض. ج- المسافة المقطوعة خلال الثواني الخمس الأولى.

 $^{\prime}$ $\omega = ^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$

أ- ∴طول البرج=١٠٨٠ =٢٠٠٢ ب- عندما يكون الجسم على ارتفاع ٥٣٥ من سطح الارض يكون هابط

 $\cdot = 0 - N \xi - {}^{\mathsf{T}} N \leftarrow 0 - = {}^{\mathsf{T}} N - N \xi$

 $3(0) = (0 \times 1 \cdot 1) - 7 \cdot = (0)$

 (\circ) ج- (\circ) المقطوعة = 7 imesاقصى ارتفاع $= (\circ)$

(70=70+8.=

يتكون من أربعة أسئلة وعلى المشترك الإجابة على سؤالين الســؤال الرابــع :-

 $(Y \cdot = Y \cdot - \xi \cdot = \Leftarrow (\xi \times \circ) - (Y \times Y \cdot) = (Y)$

 $\cdot = (1+\nu)(\circ - \nu)$

u = 0 ، u = -1 مرفوض

(170-1...)-(1...)=(1...)

$(\Upsilon) \triangle \times ((\Upsilon) \triangle) \triangle = (\Upsilon) \triangle + (\Upsilon) \triangle$ (1) 2-(1) 27=7 (1) '= 1

$$=\frac{\dot{a}\times 7\times 7\times (7)}{1} = \frac{\dot{a}\times 7\times 7\times 7\times 7\times (7)}{1} = \frac{\dot{a}\times 7$$

KO

۲) جد معادلة العمودي على المماس لمنحنى العلاقة $(m+7m)^{7}-3m+7m=7$ عند نقطة تقاطع منحناها مع المستقيم $\Gamma = 9 - 7$ س.

$$7\omega + \gamma \omega = 0$$
 بالقسمة علي γ
 $\gamma \omega + \omega = \gamma$ نعوض في معادلة المنحنی
 $\gamma \omega + \omega + \gamma \omega = \gamma$
 $\gamma \omega + \gamma \omega = \gamma \omega$
 $\gamma \omega + \gamma \omega = \gamma \omega$
 $\gamma \omega = \gamma \omega = \gamma$
 $\gamma \omega = \gamma \omega$
 $\gamma \omega = \gamma \omega$

السؤال الخامس :

(۱) إذا كانت
$$\omega = 4 جتا \left(\frac{1}{2} \omega \right) + \psi$$
 بجا $\left(\frac{1}{2} \omega \right) + \psi$ أثبت أن ω $\frac{7}{2} \frac{7}{2} \frac{\omega}{1} + \omega \frac{2\omega}{2} + \omega = 0$.

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} + \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) + \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} - \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m}$$

$$\frac{1}{m} \times \left(\frac{1}{m} \right) \times \frac{1}{m} \times \left($$

۲) إذا كان $v\left(m^{-r}-m\right)=\frac{a^{-r}\left(m\right)}{b\left(m\right)}$ ، $b\left(m\right)\neq 0$ وكانت معادلة العمودي علي المماس

1 = 7 - 3لمنحني ه (س)عند س وكان منحنى ل (س) كما في الشكل المجاور

جدڻ (٥) .

ل(س) ه(س) ل(۲)=۲ $17 = \omega 7 - 7 \times 7$ 1-=(Y)\J

- ٢ص = ٦ $\alpha(Y) = -1$

a (7)=-7

نشتق

 $\mathbf{U}^{\mathsf{T}}(\mathbf{w}^{\mathsf{T}} - \mathbf{v}^{\mathsf{T}}) \times \mathbf{v}^{\mathsf{T}} = \frac{\mathbf{U}(\mathbf{w}) \times \mathbf{v}(\mathbf{w}) \times \mathbf{v}^{\mathsf{T}}(\mathbf{w}) \times \mathbf{v}^{\mathsf{T}}(\mathbf{w})}{\mathbf{U}^{\mathsf{T}}(\mathbf{w})}$

 $U'(Y) \times Y I = \frac{U(Y) \times Y \alpha(Y) \times \alpha^{\prime}(Y) - \alpha^{\prime}(Y) \times U^{\prime}(Y)}{U^{\prime}(Y)}$ $\frac{1-\times 1-7-\times 1-\times 7\times 7}{4}=17\times (7)^{2}$

 $\frac{\pi}{\sqrt{7}} = (7)^2 \upsilon$

السؤال السادس :

- ا إذا علمت أن v(w)=w+a(w) يساوي v(w) إذا علمت أن v(w)احسب متوسط تغير v(m) في نفس الفترة علماً بأن ه($^{\prime\prime}$) ×ه($^{\prime\prime}$) = ٥، ه $^{\prime\prime}$ ($^{\prime\prime}$) + ه $^{\prime\prime}$ ($^{\prime\prime}$) = ١١.

$$\frac{\Delta \alpha(w)}{\Delta w} = \frac{\alpha(\gamma) - \alpha(l)}{\gamma} = 7$$

$$\alpha(\gamma) - \alpha(l) = 7l \rightarrow l$$

$$\alpha(\gamma) - \alpha(\gamma) = \gamma \rightarrow l$$

$$\alpha(\gamma) - \alpha(\gamma) = \gamma \rightarrow l$$

$$\alpha(\gamma) - \alpha(\gamma) - \alpha(l) \rightarrow l$$

$$\alpha(\gamma) - \alpha(\gamma) - \alpha(\gamma) \rightarrow l$$

$$\alpha(\gamma) - \alpha(\gamma) \rightarrow$$

۲) v(m) كثير حدود من الدرجة الثانية يمر منحناه بنقطة الاصل ويحقق شروط نظرية رول على الفترة $[\xi(\cdot)]$ إذا كانت القيمة الصغرى للاقتران $\sigma(m)$ في هذه الفترة تساوى -٤ جد قاعدة الاقتران v(m).

 υ $(\omega) = |\omega|^{2} + \psi\omega + \epsilon$ ·=ァ<=(·)ひ (v)يحقق رول في الفترة (v)يحقق رول في الفترة (v)**٤-=(Y)**ひ $(\xi) \upsilon = (\cdot) \upsilon$ $\xi - = |\lambda - |\xi = (\Upsilon) \upsilon$ ۰ = ۲ ۱۱+ کب ∴ ب = –ځا $1 = 1 \leftarrow \xi - = 1\xi - \xi$ $\upsilon(w) = \{w^7 - 1\}$ ∴ ب= –٤ $\mathcal{U}(\omega) = \omega^7 - 3\omega$

السؤال السابع :

) v(m) كثير حدود معرف [٣٥١] يقع في الربع الرابع ومتزايد على مجاله وكان وکان ه(m) = (m-1) معرفاً على [۲۵] ، جد مجالات التزايد والتناقص للاقتران ل $(w) = (a(w) \times v \times v)^{\dagger}$ علي نفس الفترة.

・<(m)/ひ い>(で) ه ﴿ (س) < ٠ في الفترة [١٥٦] ه (س)>۰ $(\omega) = \Upsilon(\omega) \times \sigma(\omega) \times \sigma(\omega) \times \sigma(\omega) + \sigma(\omega) \times \sigma$ $(-\times -+(+\times +))(-\times +)$ $\cdot > - = + \times [\uppsilon(\uppsilon)]$ ن ل (\uppsilon) متناقص على $[\uppsilon(\uppsilon)]$

٢) مثلث متساوي الساقين طول قاعدته ٢ سم وارتفاعه ٨سم يراد رسم مستطيل داخله بحيث يقع رأسان منه على قاعدة المثلث ويقع كل من الرأسين الأخرين على ساقي المثلث أوجد أبعاد المستطيل لتكون مساحته أكبر ما يمكن.

امتحان الكتاب الثاني/ القسم الأول

يتكون من ثلاثة أسئلة وعلى المشترك أن يجيب عليها

السؤال الأول : يتكون من 15 فقرة اختيار من متعدد

- ١. إذا كان العنصر الخامس في تجزئة نونية منتظمة للفترة [١٢٤١]يساوي $\frac{15}{\pi}$ فما عدد الفترات التجزئة ؟
 - 12 (7 ج) ۱۲ ب) ۱۱
 - ۲. ما ناتج [قا ٔ سقتا ٔ سءس ؟
 - ب) ظاس+ظتاس+ج د) ظاس+ظتاس+س+ج
- ن. إذا كان v(m) معرف علي الفترة [١٠٣] وكان $v(\sigma)$ وكان $v(\sigma)$ جد
 - (m)em? ج) ۱ 7 – (7
- د. إذا كان $\int \frac{w}{w+c|w|}$ $> w = \gamma(w)$ فما هو $\int \frac{+c|w|}{w+c|w|}$ > w
- $\Rightarrow +\frac{\omega}{\gamma(\omega)}+$ $=+\frac{\gamma(m)}{m}+$
- ، إذا كانت w من الرتبة \sqrt{g} وكان $\left|w^{-1}\right|=\left|\frac{1}{p}\right|$ ، $\left|\frac{1}{p}w^{-1}\right|=\frac{1}{p}$ فما قيمة \sqrt{g} ب) ۲
- \vee . إذا كان $9 \leq \upsilon(m) \leq -7$ ، $m \in [77]$ ، $1 \leq \int |0+\upsilon(m)| \geq m \leq v$ فما قيمة 1>v علي
- الترتيب ؟ ج) - ۲، – ۲۱ 2) 7 125 ب) ۲ ای اً) ۱۲۰۰
- ه. إذا كانت أىب،جىءه مصفوفات بحيث $1 \times \gamma = + + \times S$ وكانت أمن الرتبة 1×7 والمصفوفة 2من الرتبة ٧ × ٥ فإن رتبة المصفوفة هـ هي؟
 - أ) ٣×٥ ج) ۲×۳ ب) ۲×٥ 7×7 (2 P. $\int \frac{(3m^{7}-3m+1)^{7}}{(7m-1)^{7}} zm$?
- $\uparrow) \frac{(\gamma w l)^{\gamma l}}{\pi l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} + \kappa \qquad \Rightarrow \frac{(\gamma w l)^{\gamma l}}{\Gamma l} +$
- ۱۰. عند حل النظام من معادلتين خطيتين متغيرين بطريقة كريمر وجد أن $|m\cdot(17)|-1|=\lambda$ | الس | = | الس | جد قيمة ص؟
 - د)-ځ ۱۱. إذا كان $\int (oldsymbol{arphi}(oldsymbol{arphi}(oldsymbol{\omega})$ $(oldsymbol{arphi}(oldsymbol{\omega})$ $(oldsymbol{arphi}(oldsymbol{\omega})$ $(oldsymbol{arphi}(oldsymbol{\omega})$ $(oldsymbol{arphi}(oldsymbol{\omega})$ $(oldsymbol{arphi}(oldsymbol{\omega}))$ $(oldsymbol{arphi}(oldsymbol{\omega}))$ $(oldsymbol{arphi}(oldsymbol{\omega}))$ د)-۲ أ) صفر
- معتمداً علي الشكل المجاور فإن $\left(v a \right)(m)$ ع
 - ۱۳. إذا كان \int س لـو س $= m^{\gamma}$ لـو س $-\int 3$ ك هما قيمة 3 ، ~ 1
 - ب) س^۲وس د)سلوسىءس
 - اد ا کان $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$ ج) ا
 - ٥١. إذا كان σ (س) اقتراناً قابلاً للتكامل على [760] فإن احدي العبارات التالية صحيحة؟
 - ب) (ن(ص) ی ص = س-جناس –۱ أ) [ن(ص)ءص = س-جيا*س*
 - $(0) \delta \omega = \omega \kappa \omega + \omega + \omega + \omega$ ج) (ن(ص)5ص = س-جناس+۱

۲) إذا كانت
$$= \begin{bmatrix} -\gamma & \gamma \\ \xi & \gamma \end{bmatrix}$$
، $\varphi = \begin{bmatrix} \gamma & \gamma & \gamma \\ \gamma & \xi \end{bmatrix}$ حل المعادلة $\gamma = \gamma + \gamma + \gamma$ ("" $\gamma = \gamma + \gamma + \gamma$) الداكانت $\gamma = \gamma + \gamma + \gamma$

$$\begin{bmatrix} 1 & Y - \\ w & \xi \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 - \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 - \\ 0 & \xi \end{bmatrix} = \begin{bmatrix} 1 & 1 - \\ 0 & \xi \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 - \\ 0 & \xi \end{bmatrix} = \begin{bmatrix} 1 & 1 - \\ 0 & \xi \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 - \\ 0 & \xi \end{bmatrix} = \begin{bmatrix} 1 & 1 - \\ 0 & \xi \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 - \\ 0 & \xi \end{bmatrix} = \begin{bmatrix} 1 & 1 - \\ 0 & \xi \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 - \\ 0 & \xi \end{bmatrix} = \begin{bmatrix} 1 & 1 - \\ 0 & \xi \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 - \\ 0 & \xi \end{bmatrix} = \begin{bmatrix} 1 & 1 - \\ 0 & \xi \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 - \\ 0 & \xi \end{bmatrix} = \begin{bmatrix} 1 & 1 - \\ 0 & \xi \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 - \\ 0 & \xi \end{bmatrix} = \begin{bmatrix} 1 & 1 - \\ 0 & \xi \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 - \\ 0 & \xi \end{bmatrix} = \begin{bmatrix} 1 & 1 - \\ 0 & \xi \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 - \\ 0 & \xi \end{bmatrix} = \begin{bmatrix} 1 & 1 - \\ 0 & \xi \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 - \\ 0 & \xi \end{bmatrix} = \begin{bmatrix} 1 & 1 - \\ 0 & \xi \end{bmatrix}$$

٣) جد [قا٢س هـ حس.

ص = الطاس ۲ *ص ح ص* =قا۲ س *ح س* $sm = \frac{\gamma m}{6 | \gamma m|} = ms$

آقا سه × قا س عص

ءع = **ھ** عص

(س) استخدم تعریف التکامل المحدود فی إیجاد
$$\int_{\gamma}^{\pi} w \left(1 - \frac{\gamma}{m} - 1\right) \ge w$$
 . (س) المتصل علی [۲۰۰] $= \{1, 0, 1, 1, 2, \dots, 2, \dots,$

أ- قيم **اىب،ج** . . س**ح**(س) وس .

$$(x)$$
 (y) (y)

ب = ۲ – ۲ = ۱۸ (Y) = (Y) - (Y) - (Y) - (Y)

 $1 \xi = \cdot - 1 \lambda - \xi \times \lambda$

$$\psi - \int \frac{\left(w^{-1} - w\right)}{w} zw$$

$$\int_{-\infty}^{\infty} \frac{\left(1 - \frac{1}{m}\right)}{1} zw$$

$$\int_{-\infty}^{\infty} \frac{1}{m} \times \frac{\left(1 - \frac{1}{m}\right)}{m} \frac{1}{m} zw$$

$$\int \left(\frac{1-\frac{Y}{w}}{w}\right)^{2} \times \left(\frac{1-\frac{Y}{w}}{w}\right)^{2}$$

$$w \leq \frac{1}{w} \times \left(\frac{Y-w}{w}-1\right)^{2}$$

$$\int_{\gamma}^{\pi} \frac{\omega}{\gamma} \times \frac{1}{\gamma} \times \frac{1}{\gamma} \times \frac{1}{\gamma} \times \frac{1}{\gamma}$$

$$\Rightarrow + \left(\frac{1}{\gamma} - 1\right) \frac{1}{\gamma}$$

امتحان الكتاب الثاني/ القسم الثاني

يتكون من أربعة أسئلة وعلى المشترك الإجابة على سؤالين

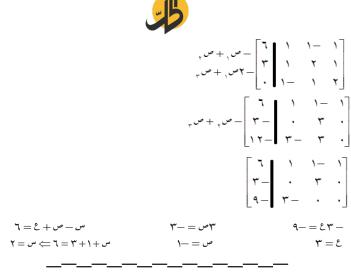
السؤال الرابع:

ا) إذا كان $\mathcal{O}(m) = \mathbb{I}^m - \mathbb{I}^m$ فجد قاعدة الاقتران $\mathcal{O}(m)$ علماً بأن المستقيم (١) Y = Y - Y عمودي على مماس منحنى الاقتران $\mathcal{G}(w)$ عند النقطة Y = Y - Y

$$\begin{aligned}
\nabla \times - \nabla &= \nabla - \nabla \\
\nabla &= \nabla \\$$

نأخذ عامل مشترك ٢ من $ص_{\gamma}$ ، Υ^{\dagger} من σ_{γ}

$$\begin{vmatrix} w + \omega + 3 & w + \omega + 3 & w + \omega + 3 \\ w & \omega & \omega \\ 0 & 1 & 1 \\ 0$$



٣) جد التكاملات الاتية: ب- <u>آ (س " -س)</u> عس أ- [ظتاس لـوجاسءس

$$\frac{-1}{\omega} = \frac{-1}{\omega}$$

$- \cdot < m \cdot \sqrt{m^2 + m^2}$ عس، $- \cdot = m \cdot \sqrt{m}$ عس $- \cdot = m \cdot \sqrt{m}$

$$\int_{0}^{\infty} \sqrt{1+w^{\frac{1}{2}}} dw$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 عند حل نظام من معادلتين بطريقة كريمر وجد أن $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ فما قيمة $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ فما قيمة $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

$$1 \leftarrow \begin{bmatrix} 1 & q \\ 7 & V \end{bmatrix} = \omega^{2} + \omega^{4}$$

$$7 \leftarrow \begin{bmatrix} 1 & 1 & T \\ 1 & -1 & T \end{bmatrix} = \omega^{2} + \omega^{4}$$

$$1 \leftarrow \begin{bmatrix} 1 & 1 & T \\ 1 & -1 & T \end{bmatrix} = \omega^{2} + \omega^{4}$$

بالطرح
$$\begin{bmatrix}
Y & Y \\
Y & q
\end{bmatrix} = \sqrt{40} =$$

$$\frac{1}{1+\sqrt{m}} = \frac{1}{1+\sqrt{m}} = \frac{1}{1+\sqrt{m}}$$
 عس .

$$0 = \frac{1}{2}e^{w}$$

$$0 = \frac{1}{2}$$

وكان العنصر الثامن فيها يساوي
$$\frac{m}{m}$$
 وكان العنصر الثامن فيها يساوي $\frac{m}{m}$ وكان $\frac{m}{m}$ وكان $\frac{m}{m}$ وكان $\frac{m}{m}$ وكان العنصر الثامن فيها يساوي $\frac{m}{m}$ وكان العنصر الثامن فيها يساوي $\frac{m}{m}$

$$U = \frac{\sqrt{-4}}{\sqrt{2}} = \frac{\rho - 1}{\sqrt{2}}$$

$$V = \frac{\gamma - 1}{\sqrt{2}} = \frac{\rho - 1}{\sqrt{2}}$$

$$V = \frac{\rho + \gamma}{\sqrt{2}}$$

$$V = \frac{\rho$$

السؤال السادس :-

١) من نقطة على ارتفاع ١٨٠ من سطح الأرض قذف جسم رأسياً للأعلى بسرعة ابتدائية مقدارها 1/c ويتسارع -1/c أفإذا كان أقصى وصل إليه الجسم على سطح الأرض

$$\begin{bmatrix} \Lambda \\ 1 \end{bmatrix} = \omega \left(\begin{bmatrix} \cdot & \Upsilon \\ \Upsilon & \cdot \end{bmatrix} - \begin{bmatrix} 1 & 7 \\ 0 & V \end{bmatrix} \right)$$

$$\begin{bmatrix} A \\ 1 & 1 \end{bmatrix} = \omega \begin{bmatrix} 1 & Y \\ Y & Y \end{bmatrix}$$

$$\begin{bmatrix} \Lambda \\ 1 \end{bmatrix} \begin{bmatrix} 1 - & Y \\ W & Y - \end{bmatrix} \frac{1}{Y - Y} = \omega$$

$$\begin{bmatrix} 3 - \\ Y \end{bmatrix} = \omega \begin{bmatrix} 3 \\ Y \end{bmatrix} - = \omega$$

. [٤٤٠] ابحث في قابلية التكامل للاقتران
$$v\left(w
ight)=rac{7\,2-7\,7-2\,7}{w-1}$$
 علي $v\left(w
ight)$

v = vغير متصل عند v = v $\frac{\left(17+(7+1)\xi+7(7+1)\right)\left(\xi-(7+1)\right)}{(1-1)}=(1-1)$

ه (س) = (m+m) لأنه كثير حدود ۱ π + π (س + π) الأنه كثير حدود

∵ ه (س)قابل للتكامل على[٤٤٠]

 $\cdot : \upsilon(m) = \omega \upsilon(m)$ الجميع قيم $\upsilon \in [2c, 1]$ ما عدا عند $\upsilon = 1$ ∵ ۍ (س) قابل للتکامل علی[٤٠٠]

السؤال السابع :-

، \mathcal{U} احسب مساحة المنطقة المحصورة بين المنحنين $\mathcal{U}(m) = m^{-1}$ ، $\mathbb{A}(m) = \gamma m - m^{\gamma}.$

إيجاد نقط التقاطع $\mathcal{U}(\mathcal{W}) = \mathcal{E}(\mathcal{W})$ $^{\mathsf{Y}} = ^{\mathsf{Y}} \mathcal{M} - \mathcal{M}^{\mathsf{Y}} = ^{\mathsf{Y}} \mathcal{M}$ $= m^{7} - m^{7} - m = 0$ $\mathbf{v} = (\mathbf{Y} - \mathbf{w} + \mathbf{v}) \mathbf{w}$ $\cdot = (1 - \omega)(\Upsilon + \omega)$ N = -Y

۲.۷ + ۲.۷ وحدة مربعة

۲) إذا كان $\sigma'(m)$ يقع في الربع الأول $\frac{a}{\sigma(m)} < \cdot \cdot \forall m \in [1:7]$ أثبت أن

$$\int_{\gamma} \left(\frac{\omega}{\omega} \right) d\omega = \int_{\gamma} \left(\frac{\omega}{\omega} \right) d\omega$$
 $= \int_{\gamma} \left(\frac{\omega}{\omega} \right) d\omega = 0$

 $\cdot > (\omega) < \cdot$ لـوس > ٠ في [٢٥١]

$$\begin{vmatrix} 1 & 7 & 7 & - \\ 0 & 7 & 7 \end{vmatrix} = \begin{vmatrix} 7 & w & 1 & - \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{vmatrix}$$
 جد w التي تجعل w التي تجعل w التي تجعل w

فك المحدد من العمود الثالث

- ٧س + ٤ = -١٧

 $\Upsilon = \omega \Leftarrow \Upsilon = -V -$